
Introduction

Processes in condensed phase are extensively studied

by thermoanalytical methods. Mechanisms of these

processes are very often unknown or too complicated

to be characterised by a simple kinetic model. They

tend to occur in multiple steps that have different

rates. To describe their kinetics, the methods based on

a single-step approximation are often used, either the

model-free or model-fitting ones.

In a previous paper [1], fundamentals of the

isoconversional methods based on the Arrhenius ex-

pression of the temperature function have been sum-

marised. The physical meaning of the activation pa-

rameters has been analysed and it was concluded that

the parameters are apparent quantities, in general

without a mechanistic interpretation. The idea of sin-

gle-step kinetics approximation has been introduced

in paper [2]. The single-step kinetics approximation

involves the imperative condition of the separability

of both temperature and conversion functions. It has

been reasoned that if a couple of separable functions

cannot be found, it indicates that the single-step kinet-

ics approximation is too crude and the description of

the kinetic hypersurface is incorrect. The separability

of temperature and conversion functions means that

the values of adjustable parameters should be unvary-

ing in the whole range of conversions and tempera-

tures. The kinetic hypersurface is a dependence of

conversion as a function of time and temperature. In

paper [2], application of non-Arrhenius temperature

functions has been justified. It has been demonstrated

that the use of these functions removes the problems

with calculation of the temperature integral.

In the last years, intense discussions have been

kept on the physical meaning of activation parameters

obtained from thermoanalytical kinetic studies [3–6] or

even the solidity of foundations of thermoanalytical ki-

netics has been appraised [7]. In this paper I would like

to present my view on the problem. This paper repre-

sents a summary and generalization of my previous

two papers [1, 2] and my discussions with a number of

thermoanalysts.

Single-step kinetics approximation

Rate of the processes in condensed state is generally a

function of temperature and conversion:
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T� �( , ) (1)

The single-step kinetics approximation employs

the assumption that the function � in Eq. (1) can be

expressed as a product of two separable functions in-

dependent of each other, the first one, k(T), depending

solely on the temperature T and the other one, f(�),

depending solely on the conversion of the process, �:

�( , ) ( ) ( )T k T f� �� (2)

Combining Eqs (1) and (2), the rate of the com-

plex multi-step condensed-state process can be for-

mally described as [1]
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Equation (3) is mostly called the general rate

equation. Indeed, it resembles a single step kinetics

equation, even though it is a representation of the ki-

netics of a complex condensed-phase process. Sin-

gle-step kinetics approximation thus resides in substi-

tuting a generally complex set of kinetic equations by

the sole single-step kinetics equation. Equation (3)

represents a mathematical formulation of the sin-

gle-step kinetics approximation.

Discussion

Why to introduce the concept of single-step kinetics
approximation

On the first view, there is nothing new in Eqs (1)–(3).

Equation (3) has been employed in the kinetics of

solid state processes for hundred years [3]. The reason

why it is necessary to introduce the concept of sin-

gle-step kinetics approximation, resides in the inter-

pretation of Eq. (3).

Solid state reactions ordinarily demonstrate a

tangled interplay of various chemical and physical

processes such as solid state decomposition, reaction

of gases with solids, phase transitions, diffusion, ad-

sorption, desorption, etc. [9]. It is very rarely, if not

never, a single-step process. Full and exact kinetic de-

scription of such a complex process would be very

difficult or even impossible since a detailed mecha-

nism of the process, or parameters occurring in

related kinetic equations, could be unknown.

Equation (1) represents the mathematical formu-

lation of general experience that the rate of the pro-

cesses in condensed state is a function of temperature

and conversion. For the description of the kinetics of

a generally very complex solid-state reaction, Eq. (3)

is used which is in fact a single step kinetics equation.

Thus, my understanding of the problem is that Eq. (3)

is not the general rate equation, as it is mostly inter-

preted. Equation (3) represents a mathematical formu-

lation of the single-step kinetics approximation,

which is an attempt to describe the kinetic

hypersurface in a simple way irrespective of the com-

plexity of the overall process. The word ‘approxima-

tion’ is the most important in order to make clear and

stress that it is not a true kinetic equation. In general,

Eq. (3) may not be straightforwardly connected with

the reaction mechanism.

Temperature and conversion functions

The temperature function in Eq. (3) is mostly consid-

ered to be the rate constant and the conversion func-

tion is considered to reflect the mechanism of the pro-

cess. It was discussed in [2] that this interpretation of

the both functions is wrong. Since Eq. (3) is a formu-

lation of the single-step approximation, the functions

k(T) and f(�) represent, in general, just the tempera-

ture and conversion components of the kinetic

hypersurface.

Obviously due to the prevailing interpretation of

k(T) as the rate constant, apart from very few excep-

tions [2, 8, 9] it is universally postulated that the tem-

perature function is expressed by the Arrhenius

equation

k T A
E

RT
( ) exp� �

�

�
�

�

	



(4)

where A and E are considered the preexponential fac-

tor and the activation energy, respectively, T is the

absolute temperature and R stands for the gas con-

stant. In Ref. [2] it has been justified that, since k(T) is

not the rate constant, there is no reason to be confined

to the Arrhenius relationship and use of two

non-Arrhenius temperature functions was suggested:

k T AT( ) �
m (5)

k T Ae( ) �
DT (6)

Thermoanalytical community inclines to the

Arrhenius relationship (4), which is, from the point of

view of mathematical treatment, the most awkward

one [2] since the temperature integral cannot be ex-

pressed in a closed form. A great advantage of the ap-

plication of Eqs (5) and (6) is the removal of the prob-

lems with the calculation of temperature integral [2].

On the contrary to the universally accepted form of

the temperature function, there is a wide range of con-

version functions applied. Practically every function is

connected with a certain idea of reaction mechanism.

The conversion functions are reviewed, e.g., in [3].

However, as discussed above, Eq. (3) is not a true ki-

netic equation, it is just an approximation. Conse-

quently, any couple of the separable functions k(T) and

f(�), leading to a satisfactory description of the kinetic

data, is suitable to be employed. There is no reason to be

restricted to Eqs (4)–(6) for the temperature function or

to the forms of the conversion function reviewed in [3],

other functions may be used as well.

Adjustable parameters

The temperature and conversion functions contain ad-

justable parameters. Their values are adjusted in the

procedure of fitting in order to reach the best fit be-

tween the experimental data and the data calculated

using Eq. (3). In order to obtain the values of parame-

ters which enable trustworthy modeling of kinetics,
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non-linear least squares methods should be used for

fitting [1, 2].

The physical meaning of the parameters A and E
in Eq. (4) as the preexponential factor and activation

energy is connected exclusively with the formation of

activated complex in an elementary reaction step.

This is evidently not the case in the description of ki-

netic behaviour of complex condensed-phase pro-

cesses within the framework of single-step kinetics

approximation. As discussed in [1], A and E are just

adjustable parameters in the temperature function, in

general having no obvious physical meaning. Their

values are composite where the representation of indi-

vidual subprocesses in the values of A and E can be ob-

scure. Therefore, one should be very cautious when us-

ing them for mechanistic considerations. The parame-

ters A and E in Eq. (4) are called the preexponential

factor and activation energy probably just because of

the force of habit; however, this terminology is very

deceiving and it is noticeable throughout the papers

published that A and E are mostly understood to be true

activation parameters. I agree with the author of

Ref. [4] who wrote: ‘In some articles, the magnitude of

activation energy reported appears to be the principal

result, perhaps even the dominant motivation for the

investigation. However, compelling reasons for such

a preoccupation with the measurements of activation

parameters are not usually provided.’ The papers

dealing with the determination of adjustable parame-

ters A and E should, at least, outline an idea of their

further employment.

The main assumption of the single-step kinetics

approximation should be emphasised here again that

the two functions are separable and independent of

each other, k(T) depending solely on temperature and

f(�) depending solely on the conversion of the pro-

cess. It means that the adjustable parameters occur-

ring in temperature function should not depend on

conversion and vice-versa. A plausible kinetic de-

scription should provide unvarying values of adjust-

able parameters both for temperature and conversion

functions over the whole range of experimental data.

Isoconversional methods

In isoconversional methods, the kinetic analysis is

carried out over a set of kinetic runs at a fixed value of

conversion. Under these conditions, the value of con-

version function f(�) in Eq. (3) is constant and the re-

action rate is a function of temperature only. The

isoconversional methods can be crudely divided into

two groups, i.e., the isothermal methods and the meth-

ods at linear heating. The latter group can be further

subdivided into differential, integral and incremental

methods. These methods are reviewed in a number of

papers, see for example [1, 2, 10] and the references

cited therein. They are often called the model-free

methods since the value of conversion function for

the fixed value of conversion is implicitly involved in

the adjustable parameter A� [1, 2].

Regarding the isoconversional methods, it is

generally recognised that they lead to the dependence

of adjustable parameters in the temperature function

on conversion. This fact has led to the concept of vari-

able activation energy (see [3,10] and the references

cited therein). As shown in [1], dependence of activa-

tion energy on conversion leads to the inseparability

of Eq. (3). The latter statement leads to so serious

consequences that I feel the need of reasoning it in

more details.

When solving Eq. (3) under the assumption of

validity of the Arrhenius equation, E is considered to

be constant. Subsequently, after the separation of

variables and integration, one can obtain the result:
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If E is a function of conversion, Eq. (3) can be re-

written as
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where E(�) is the parameter E depending on the con-

version. Equation (7) thus does not represent the for-

mal solution of Eq. (3) since the variables are not sep-

arated (E is a function of conversion).

The same conclusion on the inseparability of the

temperature and conversion functions has been made

in [2] for the parameters m and D in Eqs (5) and (6)

depending on conversion. Thus, in the case of vari-

able activation energy the basic assumption of the sin-

gle-step kinetics approximation (i.e., the separability

of the both functions) is violated and the description

of the experimental kinetic data is inadequate. This

represents the ‘logical trap’ of the concept of variable

activation energy since it is mathematically incorrect

and inherently self-inconsistent. Deductions drawn

from the dependence of activation energy on conver-

sion can hardly be considered trustworthy and should

be judged very critically and carefully.

Réti [11] tried to solve the problem with separa-

bility by introducing the relationship for the

dependence of the activation energy on conversion:

E E Th� �0 ( )� (9)

where E0 is the activation energy at zero conversion

and h(�) is a function of conversion. Combining

Eqs (3), (4) and (9), one gets:
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Equation (10) contains a new conversion func-

tion, f2:

f f
h
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Equation (10) is thus formally of the same form

as the combination of Eqs (3) and (4) so that the prob-

lem of function separability replicates. Hence, Eq. (9)

does not represent a way to eliminate the violation of

the basic assumption of the single-step kinetics

approximation.

The inseparability of the temperature and conver-

sion factors is obviously among the most important fac-

tors bringing about the inconsistency in ‘activation pa-

rameters’ obtained from isothermal and non-isothermal

isoconversional methods [1]. For the application of sin-

gle-step kinetics approximation, a couple of separable

functions has to be found. Since the value of conversion

function for the given value of conversion is implicitly

involved in the adjustable parameter A�, there can be

drawn the only conclusion: an inappropriate choice of

the temperature function is responsible for the variabil-

ity of activation energy (or better said, for the variability

of adjustable parameter E).

Escape from the logical trap

If the temperature function is expressed by Eq. (5) or

Eq. (6), the following relationships can be derived for

the relationships between the adjustable parameters [2]:

E mRT� (12)

E RT D�
2 (13)

Thus, when applying Eq. (5)/Eq. (6), an implicit

assumption of the linear/quadratic dependence of E
on T is assumed. If the treatment of experimental data

still leads to variable values of adjustable parameters,

there is a possibility to postulate that the temperature

function is equal to the sum of two partial functions,

similarly as suggested by Flynn [12]:

k T k T k T( ) ( ) ( )� �1 2 (14)

Equation (3) then obtains the form:
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If the partial temperature functions are expressed

by Eqs (4), (5) or (6), following the procedure pre-

sented in [1, 2], for the isothermal isoconversional

method one can obtain:
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where t� is the time at which the conversion � is

reached. The parameter A� is given as:

A
A
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�
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where F is the primitive function of 1/f. The subscript

� at A� designates the value related to the fixed value

of conversion.

Analogously, for the isoconversional integral

method at linear heating it can be derived:
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where � is the heating rate and T� is the temperature at

which the fixed conversion � is reached. The lower

integration limit in Eqs (20)–(22) is set to T0=0 K

since no process occurs in the sample at the starting

temperature of the experiment. The temperature inte-

gral at the right side of Eq. (20) has to be solved nu-

merically or by an expansion into series as reviewed

by Flynn [13].

Equation (14) takes into account that the tempera-

ture function may be more complex than those given by

Eqs (4)–(6). I believe the use of this function could lead

to unvarying values of adjustable parameters and, thus,

the mathematical incorrectness could be removed. On

the other hand, the beautiful simplicity of the single-step

kinetics approach is retained. If the adjustable parame-

ters are unvarying, no differential or incremental meth-

ods of obtaining the parameters are needed. In this case,

the parameters obtained should be the same irrespec-

tively of the method used to obtain them. Within an ex-

perimental error, the differential, incremental and inte-

gral isoconversional methods should give the same val-

ues of parameters. This removes the problems con-
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nected with differential methods where these employ in-

stantaneous rate values and, consequently, they are very

sensitive to experimental noise and tend to be numeri-

cally unstable.

The relationships between the adjustable param-

eters can be derived from Eq. (14). For the partial

temperature functions expressed by Eqs (4), (5) or (6),

temperature derivative of the logarithmic form of Eq.

(14) gives:

E
k E k E

k k
�

�

�

1 1 2 2

1 2

(23)

m
k m k m

k k
�

�

�

1 1 2 2

1 2

(24)

D
k D k D

k k
�

�

�

1 1 2 2

1 2

(25)

In Fig.1, the dependences of E on temperature

are shown for several combinations of adjustable pa-

rameters E1 and E2. It can be seen that, generally, the

dependences are S-shaped curves. It is impossible to

compare the shape of the curves with published data

since the published data are deformed by the men-

tioned mathematical incorrectness.

When treating the experimental data, one should

first test the invariability of adjustable parameters for the

isoconversional methods based on Eqs (4)–(6) [1, 2].

The temperature function given by Eq. (14) should be

employed in the case when the parameters vary with

conversion. For the isoconversional methods based on

Eq. (14), the temperature function has four adjustable

parameters. For their reliable determination, the data for

7 temperatures (for isothermal runs) or 7 scans (for lin-

ear heating) are needed at least. It means that it will be

more laborious to obtain the experimental data compar-

ing to the isoconversional methods based on Eqs

(4)–(6), where the minimum required temperatures or

scans is 5. In order to carry out complete mapping of ki-

netic hypersurface, the temperature region for isother-

mal measurements should be so wide as possible in or-

der to obtain trustworthy values of the parameters. Anal-

ogously, for nonisothermal measurements the scans

should include also very low values, such as 0.1 K min–1

or even less. Equations (16)–(18) and (20)–(22) cannot

be linearized and the parameters have to be obtained by

a non-linear regression method.

Method with explicit expression of the conversion
function

It is traditionally expected that kinetic analysis pro-

duces an adequate kinetic description of the process

in terms of the reaction model and Arrhenius parame-

ters. These three components (f(�), E and lnA) are

sometimes called the ‘kinetic triplet’. The most popu-

lar procedure is force fitting of experimental data to

different reaction models. Henceforth, this procedure

is referred to as the ‘model-fitting method’ [10].

In the model-fitting method, the Arrhenius rela-

tionship is used exclusively to describe the temperature

dependence of the reaction rate. Mainly for the non-iso-

thermal kinetic data, almost any f(�) can satisfactorily

fit data at the cost of dramatic variations in the

Arrhenius parameters, as it is nicely demonstrated in

[10]. The reason is assumed to be in the fitting method

where the parameters A and E and the reaction model

f(�) are adjusted simultaneously. This extra flexibility in

the fitting procedure allows errors in the functional form

of the reaction model to be concealed by making com-

pensating errors in the Arrhenius parameters [10]. Very

often, a linear relation between ln A and the activation

energy E is observed:

ln A a bE� � (26)

where a and b are constants. The relationship (26) is

called the compensation effect (see [7, 14, 15] and the

references therein).

I suspect that the choice of a couple of insepara-

ble temperature and conversion functions could be re-

sponsible both for the variations in the activation pa-

rameters with the conversion function and the com-

pensation effect. In principle, model-free and

model-fitting methods should give the same values of

adjustable parameters (within the experimental er-

rors). The importance of function separability is

emphasised above for the isoconversional methods. If

the model-free treatment of kinetic data would lead to

the variable activation energy, there is no reason to

assume that the model-fitting treatment of the same

data would give a sole unambiguous value of activa-

tion energy. Neither for the model-fitting treatment it

is necessary to be tied to the Arrhenius relationship,

the temperature functions (5), (6) or (14) can be used
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Fig. 1 Apparent parameter E calculated from Eq. (23) for the

values: A1=1�1013 min–1, E1=120 kJ mol–1 and

(1) A2=1�108 min–1, E2=80 kJ mol–1; (2) A2=1�104 min–1,

E2=40 kJ mol–1; (3) A2=0.1 min–1, E1=0 kJ mol–1



as well. One has just to be sure to deal with a couple

of separable functions.

It is a widespread opinion that a single non-iso-

thermal experiment provides information on both k(T)

and f(�). A kinetic curve represents a projection of the

time-temperature line to the kinetic hypersurface. In

order to completely map the hypersurface, a single ki-

netic curve is not sufficient, a set of curves is neces-

sary covering entire part of the hypersurface of our in-

terest. A single kinetic curve represents only a very

limited part of the kinetic hypersurface and so my

opinion is that the methods based on the processing

just a single curve should be obviated.

NPK method

The non-parametric kinetics method (NPK), developed a

few years ago [16–18], represents a special approach for

processing the kinetic data. The method introduces a new

point of view in kinetic analysis. It is also based on the sin-

gle-step kinetics approximation, so that the basic relation-

ship for the analysis of kinetic data represents Eq. (3). The

experimental values of reaction rates are arranged in a ma-

trix which is expressed as a product of two vectors contain-

ing information on k(T) and f(�). The vectors are decoup-

led by matrix manipulations. The most important feature of

the method is that it enables to decouple the vectors related

to the temperature and conversion functions without the

need of any assumptions about their functionality.

The two vectors containing information on k(T)

and f(�) are linearly independent which means that the

discrete points forming the vectors originate in two sep-

arable functions. Validity of Eq. (3) is the only assump-

tion made in the development of NPK. This method thus

can be used as a testing method for the methods using

analytical forms of k(T) and f(�), i.e., the model-free and

model-fitting methods. For a textbook case of the

first-order kinetics, i.e., for the decomposition of or-

ganic peroxides it can be seen [16–18] that the vector

carrying the information on temperature function resem-

bles the Arrhenius relationship and the conversion func-

tion is unequivocally first-order. For a more compli-

cated case of the methyl methacrylate polymerisation

[18], the temperature vector does not resemble the

Arrhenius dependence at all, it even exhibits a hump.

The conversion function is also pretty complex, not cor-

responding to any of the models used for the model-fit-

ting treatment.

NPK is a perfect method for the description of

kinetic data. It is quite surprising that it is not applied

more extensely. A probable reason is that, on the first

sight, it looks quite laborious and I guess it could be

automated with difficulties.

Conclusions

The main contribution of the single-step kinetics ap-

proximation is that it enables a mathematical descrip-

tion of the kinetics of solid-state reactions. The cor-

rect mathematical description should recover the

values of conversion and the rate of the reaction under

study for a given couple of time and temperature.

Thermoanalytical techniques (DSC, TG) provide a

global, overlapped signal of all subprocesses occur-

ring in the sample. For the same process and

time-temperature regime, the values of conversions

and reaction rates obtained by various thermo-

analytical methods may be different [2]. Hence, in the

kinetic description of DSC experimental data, analy-

sis of the rate and quantity of heat released/absorbed

is done. Analogously, in the kinetic description of TG

data, rate and quantity of mass loss is analysed [2].

Once the kinetic description is carried out, modeling

of the kinetics of the process is feasible without a

deeper insight into its mechanism [1].

When applying the single-step kinetics approxima-

tion, one has to bear in mind that it is just an approxima-

tion. For a particular case of a single-step process or of a

process with the sole limiting step, Eq. (3) can become

the true kinetic equation of the process. In such a case,

k(T) would likely obey the Arrhenius relationship and

f(�) would be closely connected with the reaction mech-

anism. However, in any other case, Eq. (3) is the mathe-

matical formulation of the single-step kinetics approxi-

mation and the functions k(T) and f(�) represent the

temperature and conversion components of the kinetic

hypersurface. In general, the adjustable parameters oc-

curring in the both functions have no obvious physical

meaning. The function k(T) may not be the Arrhenius

relationship and f(�) may not be one of the functions

listed in [10]. The only essential requirement for k(T)

and f(�) is that they have to be separable. The function

separability is implicitly involved also in other kinetic

considerations, for example in the concept of reduced

time introduced by Ozawa [19]. If a couple of separable

functions cannot be found, according to my opinion it

indicates that the single-step kinetics approximation is

too crude and another, a more sophisticated approach

should be chosen for processing the experimental data.
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